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Abstract

periodic potential.

We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential,
where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic
velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the
voltage potential increases, the critical values of which are different for electron with different spins and valleys.
Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless
graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and
valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac
points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the
structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the
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Background

Two-dimensional (2D) Dirac materials with hexagonal lat-
tice structures are being explored extensively since the
discovery of graphene, such as silicene [1, 2], transi-
tion metal dichalcogenides [3, 4], and phosphorene [5].
Although graphene has many particular properties, its
application is limited by the zero band gap and the weak
spin-orbit interaction (SOI). Recently, a silicon analog
of graphene, silicene, has been fabricated via epitaxial
growth [6-10], and its stability has been predicted by
theoretical studies [11, 12]. Graphene and silicene have
similar band structures around K and K’ valleys, and the
low energy spectra of both are described by the relativis-
tic Dirac equation [13]. Contrary to graphene, silicene
has a strong intrinsic SOI and a buckled structure. The
strong SOI could open a gap at Dirac points [13, 14] and
lead to a coupling between the spin and valley degrees
of freedom. The buckled structure allows us to control
the band gap by an external electric field perpendicular
to the silicene sheet [14—16]. Furthermore, silicene has
the advantage that it is more compatible with existing
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silicon-based electronic technology. These characteristics
make silicene an excellent material for the next-generation
nanoelectronics. In particular, a silicene field-effect
transistor at room temperature has been successfully
fabricated by a growth-transfer-fabrication process in
experiment [17].

The discovery of 2D Dirac materials provides new
opportunities to explore quantum control of valley. The
two inequivalent valleys K and K’ in the first Brillouin
zone could be regarded as an additional degree of free-
dom besides charge and spin for quantum information
and quantum computation [18—20]. For example, the val-
ley degree of freedom can be incorporated to expand an
electron spin qubit to a spin-valley qubit [18]. There-
fore, valleytronics which aims to generate, detect, and
manipulate the valley pseudospin has attracted consider-
able interest. In graphene, various schemes to achieve a
valley polarization have been proposed by utilizing unique
edge modes [21, 22], trigonal warping effect [23], topolog-
ical line defects [24, 25], strain [26, 27], and electrostatic
gates [28]. Compared to graphene, silicene has significant
advantage in the study of valley pseudospin. It is found
that silicene exhibits a rich variety of topological phases
and Chern numbers under the modulation of different

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-018-2495-4&domain=pdf
mailto: luweitao@lyu.edu.cn
mailto: tianhongyu@lyu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Lu et al. Nanoscale Research Letters (2018) 13:84

external fields [13, 16, 29, 30]. In the presence of elec-
tric field E; and exchange field /4, Ezawa explored the
phase diagram in the E, — /& plane which is characterized
by the spin and valley indices [16]. Further considering
the Rashba SOI, a valley-polarized quantum anomalous
Hall state is predicted in silicene owing to the topolog-
ical phase transition [31]. Based on the state transition,
a silicene-based spin filter with nearly 100% spin polar-
ization is proposed which is robust against weak disorder
[32]. Yokoyama studied the ballistic transport through a
ferromagnetic (FM) silicene junction and demonstrated
a controllable spin and valley polarized current [33]. In
transition metal dichalcogenides with a broken inversion
symmetry, the spin splitting of the valence bands arising
from intrinsic SOI is opposite at the two valleys due to a
time-reversal symmetry [3, 34, 35]. The broken inversion
symmetry could result in a valley-dependent optical selec-
tion rule, which can be used to selectively excite carriers
in the K or K’ valley via right or left circularly polarized
light, respectively [3, 34]. In experiment, the signal of val-
ley polarization has been probed by optical [36, 37] and
transport [38, 39] measurements. A giant nonlocal valley
Hall effect was observed in bilayer graphene subjected to
a symmetry-breaking gate electric field, and the nonlo-
cal signal persists up to room temperature [38]. A recent
review of valleytronics in 2D Dirac materials is provided
in Ref. [40].

Superlattice is an effective method of engineering the
electronic structure in semiconductors and 2D materials
[41]. Superlattice patterns with nanoscale can naturally
arise in experiment when graphene or silicene is placed
on top of metallic substrates [42, 43]. A superlattice in
graphene could lead to renormalization of anisotropic
Fermi velocity [44] and generation of new Dirac points in
the spectrum [45-47] owing to the chiral nature, which
have been experimentally observed [43, 48, 49]. In sil-
icene superlattices with electric field E, and exchange field
h, both spin and valley degeneracies are lifted. It is con-
firmed that miniband structure and minigaps caused by
the superlattices depend on the spin and valley indices
[50]. Furthermore, the spin and valley polarizations could
be enhanced by the silicene superlattices [51]. Just like
graphene, many novel electronic structures are expected
in silicene superlattices. However, works on silicene super-
lattices are very few [50, 51]. In this paper, we discuss
in detail a complementary aspect, namely, the spin- and
valley-dependent band structure and transport property
of silicene. We found that the spin and valley indices
have different impacts on the extra Dirac points and
anisotropic velocity which can be tuned by the struc-
tural parameters. The velocity is greatly suppressed due
to the electric field and exchange field. A remarkable spin
and valley polarization is achieved, which can be greatly
enhanced by the disorder.
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The paper is organized as follows. In the “Methods”
section, we present the theoretical formalism and the dis-
persion relation. The numerical results on band structure,
spin and valley polarized transmissions are shown in the
“Results and discussions” section. Finally, we conclude
with a summary in “Conclusions” section.

Methods

In the single-particle approximation, the electronic struc-
ture of silicene in the vicinity of Dirac points obeys an
effective Dirac Hamiltonian. The system under considera-
tion is a one-dimensional silicene superlattice formed by a
series of local potential barriers U, exchange fields /, and
perpendicular electric field E,. U, h, and E, are present
only in the barrier regions with barrier width dj, whereas
U = h = E, = 0 in the well regions with well width d,,,
as shown in Fig. 1. The superlattice with a Kronig-Penney
type varies only along x direction, and the length of one
unit is d = dj, + d,. Similar model has been discussed
in Refs. [51, 52], which mainly focus on thermoelectric
and electronic transport rather than the band structure
and disorder effect studied in this work. Experimentally,
U can be produced by the metallic gates and % can be
produced by the magnetic proximity effect with FM insu-
lators EuO [33], which are deposited periodically on top of
the silicene layer (see Fig. 1). The electric field E, applied
perpendicular to silicene can induce a staggered sublattice
potential A, = (E,, with 2¢ ~ 0.46A the vertical sepa-
ration of A and B sites of the two sublattices due to the
buckled structure [16]. Hence, the electronic states can be
described by the Hamiltonian,

H = hvp(kete — nkyty) + Apo 7, + Us. (1)

Ape = Az — nokso describes the band gap for differ-
ent spin and valley indices, which can be controlled by the
staggered potential A, and the SOl Aso. Uy, = U —oh is
the effective potential for different spin indices. n = +1

Ve

e ————— &

Fig. 1 Top: schematic of the silicene superlattices. The FM insulators,
such as EuO and EuS, on the top of silicene induce the exchange fields
in silicene, as proposed for graphene [53]. The metallic gates on the
top of FM insulators control the Fermi level locally. Bottom: schematic
of the energy spectrum in silicene with and without external fields
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denotes the K and K’ valleys. 0 = +1 denotes spin-up and
spin-down states. vr is the Fermi velocity. In silicene, the
intrinsic and extrinsic Rashba effects are very small and
can be neglected [15].

Due to the translational invariance along the y direction,
the transverse wave vector kj is conserved. The wave func-
tion for valley 7 and spin o in each region has the form
U(x,y) = ¥ (x)e? with

1 . 1 .
Yx)=A ( hvrk_ ) e'd® + B ( —hvpk, ) e"Mno* (2)

€no €no
In the barrier regions, €, = €, = (E — Us) +

Ay, and the x component of the wave vector q,, =

a = \/(E — Uy)? — A2, — (hwpky)/hvr. In the well
regions, €, = €, = E —nolso and g0 = qw =

\/EZ - )%O — (hvrky)? /hvg. ks = qyo * ink,. The trans-
mission probability T;, can be calculated using the trans-
fer matrix technique. The normalized conductance for a
particular spin in a particular valley at zero temperature is
given by

1 /2
Gyo(E) = = / Tyo (E, Esinf) cos 0d0, (3)
2 —m/2

where 6 is the incident angle with respect to the x
direction. The spin- and valley-resolved conductances are
defined as Gy = (GKT(l) + GK’T(U) /2 and Gy =
(GK(K/)T + Gr i) /2, respectively. Then, we introduce
the spin polarization Ps and valley polarization P,:

Py =(Gy — G/(Gy +Gy), (4)

P, = (Gx — Gk)/(Gk + Gg). (5)

Based on the Bloch’s theorem and the continuity con-
dition of wave functions, the dispersion relation E(ky) for
spin-up and spin-down electrons near the K and K’ valleys
can be calculated,

cos(kyd) = cos(qwdw) cos(qpdp)
(epqw)* + (ewgp)* + (Gb—ew)zky2
2€werqwqp

sin(gwdyw) sin(gqpdy),

(6)

and k, is the Bloch wave number. In order to simplify
the calculation, the dimensionless units are introduced:
E — Ed/hvg, U — Ud/hvE, Aso — Asod/hve, A, —
Ad/hwp, h — hd/hvp, ky — kyd, ky — ked, d,y —
dy/d, and d, — dp/d. Note that at A, = iso =
h = 0, Eq. (6) is reduced to the one found for gapless
graphene in a periodic potential, where both spin and val-
ley are degenerated [44—47]. From Eq. (6), we can see
that exchange field / alone could induce the split of spin,
while the valley keeps degeneracy. However, the valley
degeneracy can be lifted by the electric field E, with the
help of the SOI Asp. Thus, a combination of the exchange
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field and the electric field could lift the spin and val-
ley degeneracies [16, 31-33], as shown in Fig. 1. In the
proposed system, electrons with different spins near dif-
ferent valleys would present various band structures and
transport features.

Results and discussions

In this section, we would use the above equations to
calculate the band structures and transport properties
for different spin and valley indices in silicene superlat-
tices. The widths of barriers and wells are assumed to be
the same in what follows. The results for the case with
unequal well and barrier widths (d;, # d,,) are similar to
those in gapless graphene [47]. Some parameters are set as
dp = dy = 50 nm and Ago = 3.9 meV in silicene, unless
otherwise stated. We shall concentrate on the first two
minibands (the lowest valence and conduction minibands)
near the Fermi level.

Spin- and Valley-Dependent Band Structure

First, the effect of potential {/ on minibands is depicted in
Fig. 2. In order to discuss the gapped case and gapless case
of energy bands simultaneously, we set A, = 7.8 meV =
2As0. In the absence of potential (I = 0), the spin-up
electron near K valley (K 1 electron) and spin-down elec-
tron near K’ valley (K’ | electron) are gapless (see Fig. 2
(al, a4)), while the spin-down electron near K valley (K |
electron) and spin-up electron near K’ valley (K’ 1 elec-
tron) have a large gap (see Fig. 2 (a2, a3)). The minibands
of spin-up (or spin-down) electron shift to the negative (or
positive) energy range from E = 0 by /, due to the effective
potential U, = U — oh. The band structures of K 1 (or
K |) electron and K’ |, (or K’ 1) electron present mirror
symmetry with respect to E = 0, consistent with Eq. (6).
However, this mirror symmetry is destroyed in the pres-
ence of U. Observably, as U increases, extra Dirac points
appear, the number of which increases in the meantime.
The extra Dirac points can be demonstrated by the chiral-
ity of the wave functions in their vicinity [46]. The features
of Dirac points in silicene system rely heavily on the spin
and valley degrees of freedom, as shown in Fig. 2. For
example, at / = 135 meV in Fig. 2 (d1-d4) for K 1, K |,
K’ 4 and K’ | electrons, the numbers of Dirac points are
5, 6, 4, and 7, respectively. For specific values of U, such
as U = 40.66 meV for K | electron (see Fig. 2 (b2)) and
U = 100.63 meV for K’ 1 electron (see Fig. 2 (c3)), a new
Dirac point can be generated at k, = 0, and it will split
into a pair which move in opposite directions away from
the k, = 0 point but always keeping k; = 0, as U further
increases. In consequence, the band gaps for K |, and K’ 1
electrons are closed (see Fig. 2 (b2, c3)), and the gapped
system becomes gapless. In order to find the critical value
of U, we set d, = d,, and k, = 0. Analogous to the rule
in gapless graphene [47], taking into account the implicit
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Fig. 2 Energy spectrum versus k, for several different values of potential U. (a1-a4) U = 0; (b1-b4) U = 40.66 meV; (c1-c4) U = 100.63 meV; (d1-d4)
U = 135.0 meV. The values of parameters are h = 8.0 meV, A, = 7.8 meV, and ky = 0

function theorem, one can conclude that the longitudinal
wavevectors at the new Dirac points satisfy g, = ¢, when

(U —oh)?— A2+ 200 A kso
- 2(U — oh) ’

For K 1 and K’ | electrons with no = 1, when A, =
2X.50, Eq. (7) can reduce to

U—oh
Ey = 5 (8)

Correspondingly, Eq. (6) turns into

Ep (7)

2 2) 2 272
€ +e€r)q, + (ep — €y)°k
( b W) id 5 v J sinz(quw) = 1;
2ewepqy,

)

which is satisfied when (eg +€2)q% + (e — EW)Zky2 =
—2€y€pq> or qud = 2nm (n is a positive integer). Based
on Eq. (8), we have ¢, = —¢,, and so the former equal-
ity is fulfilled only if ko = 0 for K 1 and K’ | electrons
at A, = 2Xs0o, corresponding to the original Dirac point.
The solutions of g,,d = 2nm have the form

1 [(E5 —230) &
ky = £~/ ——>— — (2nm)2.
y0 d\/ (hvp)? (2nm)

cos? (gwdw)—

(10)

When ,/Eg — )»%Od/Znth > n, kyo is real, and the

new Dirac points will arise which are exactly located at

(Eo, kyo). At low values of U, ky is imaginary, and there is
no solution for 7, which means no extra Dirac points. The
Dirac points appear only after a critical value of U, such
as U = 40.66 meV for K | electrons in Fig. 2 (b2), corre-
sponding to #n = 1. According to Eq. (10), The number of
Dirac points Np can be obtained. When A, = 20,

2 2
JE2—32,d

Np =2 1 11
b 2 hvp + (1)
for K 1 and K’ |, electrons, while
VE —225d
Np=2| Y2 7507 (12)

2w hvp

for K | and K’ 1 electrons, where [...] denotes an inte-
ger part. Note that at the critical value of U, such as U =
40.66 meV and 100.63 meV, the number of Dirac points
is Np = 2n — 1 for K | and K’ 1 electrons (see Fig. 2
(b2, 3)).

Equations (7) and (10) manifest that the positions and
the numbers of Dirac points could be adjusted by the elec-
tric field E, and exchange field /. Figure 3 exhibits the
number of Dirac points Np as a function of U for different
values of E; and #. When A, = 7.8 meV in Fig. 3a, with
increasing U, Np for K 1 and K’ | electrons increases
in the form of odd number, consistent with Eq. (11). Np
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Fig. 3 Number of Dirac points Np versus potential U. (@) h = 8.0 meV

and A,=78meV; (b) h=20.0 meV and A,=7.8 meV; (c) h=8.0 meV
and A, = 15.0 meV

for K | and K’ 1 electrons increases in the form of even
number, consistent with Eq. (12), except for Np at the
critical value. Comparison between Fig. 3a and b indi-
cates that as / increases, the critical value for spin-down
(or spin-up) electron decreases (or increases) gradually.
When A, = 15 meV # 2Xigo in Fig. 3¢, Np for all elec-
trons increases in the form of even number, except for Np
at the critical value. Distinctly, the critical values of U are
different for electron with different spins and valleys. The
Dirac points could be controlled by a joint modulation of
the parameters U, E,, and /.

The potential U and barrier width dj, could be used to
regulate the band gap, as illustrated in Fig. 4. The gaps for
K 1 and K’ | electrons are small, while the gaps for K |
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and K’ 1 electrons are large due to Ay = A; — noiso.
As U increases, all the minibands gradually move toward
high energy region (see Fig. 4a), and all the band gaps
display damped oscillation with U (see Fig. 4b). When
U = oh, the effective potential is zero, and the gap
reaches maximum value. The gap is closed at the criti-
cal value of U, on account of the emergence of new Dirac
points. Figure 4c, d depicts the dependence of minibands
and band gaps on barrier width d, at &/ = 0. In the
absence of external field (d, = 0), the minibands keep
degenerate, and the gap at Fermi level is 2A50. With the
appearance of dj,, the miniband is split, where valley and
spin become nondegenerate. The minibands of K 1 (or
K |)and K’ | (or K" 1) electrons keep mirror symme-
try about E = 0 (see Fig. 4¢). As d,, increases, the gaps of
K | and K’ 1 electrons are broaden gradually. The gaps
of K 1 and K’ | electrons decrease to zero when d, sat-
isfies djp/dy, = Aso/A, and thereafter increase with dj,
(see Fig. 4d). The gap widths approach to saturation with
the further increase of dj. Furthermore, the width of mini-
band is narrowed as dj, increases (not shown in the figure),
due to the less coupling of eigenstates. The effect of elec-
tric field on band gap is analogous to that in previous
study [50].

The group velocity depends strongly on the spin and val-
ley indices, as shown in Fig. 5. The components (vy, vy) of
velocity can be defined as

vx/VF = 0E/dky, vy/vE = OE/0k). (13)

Figure 5 presents the velocity components v, and v,

in units of vr at original Dirac point (m = 0) and new

80

a
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40-

miniband

15] *

band gap
S

(9]
1

57\

0 ;
0 50 100
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A; =150meV,and ky =k, =0

=
150 0

Fig. 4 (a) Minibands near Fermi level and (b) their band gaps at original Dirac point versus potential U, at dp = d,, = 50 nm. (c) Minibands near
Fermi level and (d) their band gaps at original Dirac point versus dp, at U = 0 and d,, = 50 nm. The values of other parameters are h = 8.0 meV,
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Fig. 5 (a—d) Velocity versus potential U, and the parameters are set as h = 20.0 meV and A, = 7.8 meV. The black, red, blue, and green solid curves
are the velocities voy, vix, vax, and vsy, respectively. The black, red, blue, and green dashed curves are the velocities voy, v1y, v2y, and vy, respectively

Dirac points (m = 1,2, 3). One can see that as U increases,
voy oscillates in a decayed way and vo, &~ vF is almost unaf-
fected (see Fig. 5a, d). At the critical value of U where the
new Dirac points emerge, v,y ~ vp but voy = vy = 0,
indicating a collimation behavior along the k, direction
for specific spins and valleys. When U exceeds the crit-
ical value and further increases, v,y increase to vg but
Vs decrease to zero gradually. The effect of the periodic
potential is highly anisotropic, as a result of the chiral
nature. The features of anisotropic velocity are various for
different spins and valleys owing to the gap A,, and the
potential U,, which can be commanded by employing L.
Taking U/ = 20 meV for example, vo, = vr for K 1 elec-
tron is much greater than v, = 0.16vr for K’ | electron,
and no vg, for K | and K’ 1 electrons due to the band gap.
Vinx (OF Vyy) for spin-up electron is always larger (or less)
than the one for spin-down electron in the same valley.
Notably, Fig. 5 also implies that for small value of U, vy,
Voy, and vy, are less than vr due to A, and 4, other than
the gapless system [44]. For instance, viy = 0.98vr, 0.89vf,
0.89vr, and 0.98vg for K 1, K |, K’ 1 and K’ | elec-
trons, respectively, when the Dirac point appears. In order
to illuminate the influence of A, and % on the group veloc-
ity, Fig. 6 shows the velocities (vox, voy) as a function of (a)
A, and (b) & for K 1 electron. From Fig. 6a we can clearly
see that vg, is monotonically decreasing with A, while vg,
is insensitive to the change of A,. On the contrary, vo, is
desensitized to /, while vo, increases to maximum value
voy = vr at h = o U and then decreases with /. The results
indicate that the group velocity can be suppressed by A,
and / in silicene.

Spin- and Valley-Polarized Transport

The spin- and valley-dependent band structure is
reflected in transport property and provides a guide in
controlling the transport. In this section, we discuss the
properties of spin- and valley-polarized transport through
a finite silicene superlattice. Figure 7 shows the transmis-
sion probability T;, for (a, c) K 1 and (b, d) K | electrons,
and the period number n = 10. The red dashed curves
are the minibands, which are also the borders for differ-
ent electronic states deciding the transmission. We can
see that the transmission is restricted in the miniband
region and no transmission in the band gap region (see
Fig. 7a, b). The distribution of transmission is symmet-
ric around k, = 0 due to the symmetric minibands. The
resonant characteristic of transmission arises from the
resonant states. It should be noted that the transmission
still exists in the gap region near k, = 0 due to the tunnel
effect of eigenstates. T}, at Fermi level for K 1 and K |
electrons are shown in Fig. 7¢, d), respectively. One can
clearly see that many thin resonant peaks with T;, = 1
occur precisely at the positions of the Dirac points,
suggesting an application of the system as a spin and
valley filter.

The strong dependence of band structure on the spin
and valley indices is beneficial to the realization of high
spin and valley polarizations. Figure 8 presents the mini-
bands, conductances Gy, spin polarization Ps, and valley
polarization P, as a function of potential U. It can be
found that the distribution of conductance is completely
in agreement with the band structure, that is, the conduc-
tance (or conductance gap) corresponds to the miniband
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Fig. 6 Velocities vox and vgy versus (@) A; and (b) h, for K 4 electron. (@) h = 200 meVand Asp = A, /2.(b) A; = 7.8 meV
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(or band gap). The minibands for spin-up and spin-down
electrons could be alternative distribution by adjusting
h properly. Consequently, Gg(xy+ and Ggx), present
alternative distribution as well, i.e., Gx)s nearly van-
ishes for those regions where Gk k), is in resonance and
vice versa. This result directly leads to a remarkable spin
polarization, proposing a switching effect of spin polar-
ization (see Fig. 8a). By changing A,, the minibands and
conductances for electrons near K and K’ valleys could
be controlled, leading to a fully valley-polarized current

(see Fig. 8b). Compared with spin polarization, the valley
polarization is not perfect enough. However, this draw-
back could be remedied via the disorder structure of the
system, as discussed in the following.

Figure 9 shows the (a) spin polarization Ps; and (b)
valley polarization P, in (U, &) space. Interestingly, both
P; and P, present periodical changes in the considered
region, which is not observed in the ferromagnetic sil-
icene junction [33]. Both distributions of Ps and P, are
antisymmetric with respect to # — —h. It is possible to

k, (nm™)

Fig. 7 Contour plot of the transmission Ty, (E, k) for (a), (€) K 1 electron and (b), (d) K | electron. The values of parameters are the same as these in
Fig.2 (d1-d4),and n = 10

01 00 01 02
k, (nm™)
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100

achieve independently a full spin and valley polarization
by a proper tuning of the fields U and k. For example,
when i = 6 meV and U = 42 meV, P, ~ 1 and
P, ~ 1, meaning that the current is mainly contributed
by K 4 electrons. When # = 6 meV and U = 44 meV,
P, ~ 1and P, ~ —1 while P, ~ —1 and P, ~ —1 at
h = 6 meV and U = 46 meV. The results demonstrate

that a spin and valley polarization can be switched
effectively.

In experiment, the structural imperfection of the model
is unavoidable due to the limitations of the experimen-
tal techniques. Therefore, it is necessary to discuss the
effect of the disorder on transmission. When the electric
field or exchange field presents disorder, the conductance,

h (meV)

Fig. 9 Contour plot of (a) spin polarization Ps(U, h) and (b) valley polarization P, (U, h), at A, = 10.0 meV. The values of other parameters are the
same as these in Fig. 8
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U (meV)

Fig. 10 Conductances (a) G4 and (b) G| versus potential U, when the electric field presents disorder, at n = 50 and A, = 20.0 meV. The solid,
dashed, dotted, and dash-dotted curves correspond to the disorder strength § = 0.0, 0.1, 0.3, and 0.6, respectively. The values of other parameters

are the same as these in Fig. 8

spin polarization, and valley polarization are shown in
Figs. 10 and 11. We set disorder situations of A, and
h fluctuate around their mean values, given by (A;) =
Ay and (h) = ho, respectively. The fluctuations are
given by

Azli = Azo(1 + 88i),

hl; = ho(1 +68y), (14)

where {¢;} is a set of uncorrelated random variables or
white noise, — 1 < ¢; < 1, § is the disorder strength, and
i is the site index. Note that the disorder only takes place
in the x direction, and the system is always homogeneous
in y direction. Thus, &y, still keeps conservation. Figure 10
exhibits the effect of the disorder of the electric field on
the conductances (a) Gy and (b) G;. With the presence

100 120

U (meV)

Fig. 11 Polarizations Ps and P, versus potential U when a the electric field or b the exchange field presents disorder. Ay = 20.0 meV and
h=70meVin(a). A, = 20.0 meVand hy = 7.0 meV in (b). The values of other parameters are the same as these in Fig. 10
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and increase of the disorder strength §, both G4 and G
are suppressed gradually, and each resonant peak splits
into many small peaks. One may find that the conduc-
tance range is narrowed while the conductance gap range
is broadened. Hence, the allowable (or forbidden) ranges
of G4 completely fall into the forbidden (or allowable)
ranges of G, giving rise to an excellent spin polarization
(see Fig. 11). Furthermore, the positions of conductances
and conductance gaps are nearly invariable as § changes,
suggesting that the miniband and band gap are insensitive
to the disorder. Note that the disorder effect of the electric
field on Gk and G- is similar to that observed in Fig. 10.
Figure 11 presents the disorder effects of (a) the electric
field and (b) the exchange field on polarizations P and
P,. Obviously, with the increase of §, Ps; and P, increase
greatly, and the polarization platform is broadened. Thus,
a full spin and valley polarization is realized. Comparison
between Fig. 11a and b indicates that the disorder effect
of exchange field is more prominent. The results demon-
strate that the disorder could enhance the spin and valley
polarizations compared with the order case, which is an
advantage in realistic application.

Conclusions

In summary, we demonstrated detailedly that band struc-
ture and transport property of silicene under a periodic
field strongly depend on the spin and valley degrees of
freedom. The numerical results indicate that electrons
with different spins and valleys have various character-
istics in Dirac point, bang gap, and group velocity. In
particular, owing to the electric field and exchange field,
the anisotropic velocity is restrained, which displays a
collimation behavior for specific spins and valleys. There-
fore, the transmission presents strong spin- and valley-
dependent feature, consistent with the band structure,
resulting in a significant spin and valley polarizations. In
addition, the disorder could greatly enhance the spin and
valley polarizations. Finally, we hope these results can be
conducive to the potential applications of the spin and
valley indices.
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